logo search
Экология человека Гора

3.7. Острая гипоксия

Гипоксия в переводе с греческого означает «понижение содержания кислорода в тканях организма». Синоним этого термина в русском языке – кислородное голодание или кислородная недостаточность.

У практически здоровых людей гипоксическая гипоксия возникает при подъемах на высоту без дополнительного дыхания кислородом. Эту форму гипоксического состояния принято называть высотной гипоксией. Она имеет исключительно большое значение для авиакосмической медицины, так как в условиях полета могут возникать различные ситуации, определяющие снижение парциального давления кислорода во вдыхаемом воздухе. Кроме того, воздействие гипоксической гипоксии умеренной степени традиционно используется как функциональная проба при врачебной экспертизе летного состава (В.Б. Малкин, 1986).

П. Бэр (1878) на основании экспериментального изучения влияния пониженного барометрического давления впервые установил, что кислородное голодание – основная причина возникновения болезненного состояния и гибели животных на больших высотах.

В России эти проблемы привлекли к себе внимание двух выдающихся естествоиспытателей – Д. И. Менделеева, предложившего использовать для защиты людей в высотных полетах герметические кабины с искусственной газовой атмосферой, иИ. М. Сеченова, впервые теоретически проанализировавшего газообмен в легких и поступление О2в организм при различных степенях разрежения вдыхаемого воздуха. И. М. Сеченов установил закон постоянства газового состава альвеолярного воздуха и зависимость его от парциального давления кислорода в окружающей газовой среде. Им же было сформулировано представление о«внутренней высоте», отражающей закономерные изменения поступления в кровь О2при снижении барометрического давления. Исследования П. Бэра и И. М. Сеченова имели фундаментальное значение как для успешного изучения проблемы кислородного голодания, так и для разработки средств, защищающих экипаж в полете от гипоксии.

В конце XIX столетия и в первой половине XX века значительный вклад в изучение физиологических механизмов адаптации организма животных и человека к высотной гипоксии был сделан выдающимися физиологами: за рубежом – А. Моссо, Дж. Холденом, Д. Баркрофтом, К. Дугласом, Л. Гендерсоном, Н. Цунцем, Е. Шнейдером, X. Гартманом, Э. Опицем, У. Люфтом; в нашей стране –В. В. Пашутиным, П. М. Альбицким, П. И. Егоровым, В. В. Стрельцовым, Г. Е. Владимировым, А. П. Аполлоновым, Д. И. Ивановым, В. Г. Миролюбовым, М. Е. Маршаком, Н. Н. Сиротининым, Д. Е. Розенблюмом, В. Б. Малкиным и др.

В начале XX века интерес к высотной гипоксии неуклонно возрастал. Причиной этого было прежде всего развитие техники, которое определило возможность как плавания на подводных лодках, так и полетов на самолетах, а позже и на космических летательных аппаратах. В первые годы развития авиации, когда летчики летали в открытых кабинах и в полетах еще не пользовались приспособлениями для дыхания кислородом, кислородное голодание было центральной проблемой авиационной медицины. Именно в эти годы острое кислородное голодание стали использовать в качестве функциональной пробы для отбора лиц, поступающих на службу в авиацию, и при медицинском освидетельствовании летчиков.

Техническая революция не только открыла возможность полетов человека в космическое пространство, путешествий в глубины морей и океанов, но и обеспечила сохранение нормальной жизнедеятельности людей в этих условиях, которые лежат далеко за границами естественных адаптационных возможностей организма человека. Однако абсолютно надежной техники нет. Нельзя полностью исключить вероятность разгерметизации кабин, неправильного использования или отказа кислородного снаряжения.

П. Бэр, И. М. Сеченов установили, что уменьшение рО2во вдыхаемом воздухе является причиной возникновения высотной гипоксии – кислородного голодания. Механизм этого явления обусловлен тем, что в процессе дыхания газообмен в легких – поступление в кровь кислорода и выведение углекислого газа – происходит в основном в результате разницы парциальных давлений этих газов в крови легочных сосудов и альвеолярном воздухе. Следовательно, с понижениемрО2во вдыхаемом воздухе уменьшается поступление кислорода в организм, ко всем его тканям.

Организм человека не располагает сколь-либо существенными запасами кислорода. Прекращение поступления О2в организм приводит через несколько минут к развитию тяжелого патологического состояния, а смерть наступает уже через 5–6 мин, в то время как без воды человек может обходиться до 10–12 дней, а без пищи – более месяца.

В зависимости от функционального состояния организма потребность его в О2изменяется. При работе потребление О2в испытывающих функциональную нагрузку тканях возрастает. Кислородное голодание возникает в случае, когда потребность тканей в кислороде превышает его поступление к ним.

Минимальный уровень энергии окислительных процессов и потребления О2, необходимый для поддержания структуры и функции, неодинаков для различных тканей организма. У высокоразвитых животных и человека наиболее чувствительной к недостатку кислорода является ЦНС – филогенетически самое молодое образование. По даннымЭ. Ламбертсена, мозг человека в среднем потребляет в покое 3,5 мл О2на 100 г ткани в 1 мин. Это приблизительно 50 мл в 1 мин для всего мозга. Если учесть, что масса головного мозга составляет немногим более 2 % массы тела, то становится очевидной крайне высокая его потребность в О2. Последнее определяет то, что при остром кислородном голодании в первую очередь возникают нарушения деятельности ЦНС.

Основным показателем развития и тяжести гипоксического состояния является величина парциального давления О2в альвеолярном воздухе (раО2) и близкая к ней величина напряжения О2 в артериальной крови (раО2). В связи с этим важно определять величины этих показателей при подъемах на различные высоты или при изменении содержания кислорода. Приближенный расчетраО2в зависимости от величины барометрического давления впервые был предложен в 1880 годуИ. М. Сеченовым. Им же было высказано мнение, что падениераО2до 20 мм рт. ст. уже несовместимо даже с кратковременным сохранением жизни.

В дальнейшем расчет раО2в зависимости от величинырО2в окружающей газовой среде был уточнен; в частности, была введена поправка на величину дыхательного коэффициента. Расчет этой величины может быть осуществлен по следующей формуле:

где раО2– парциальное давление О2в альвеолярном воздухе; В – барометрическое давление;рН2О – парциальное давление водяных паров в легких, которое зависит только от температуры, и при температуре тела 37 °C равно 47 мм рт. ст.;раСО2– парциальное давление СО2в альвеолярном воздухе; С – концентрация, процент содержания О2в воздухе; R – дыхательный коэффициент.

В дальнейшем также была уточнена и величина критического значения раО2. По мнению различных авторов, она составляет от 27 до 33 мм рт. ст. Критическое же значениерО2в смешанной венозной крови составляет величину 19 мм рт. ст.

В зависимости от степени снижения рО2, от высоты подъема высотную гипоксию принято делить наоструюихроническую.Вследствие острой гипоксии возникает высотная болезнь, хронической –горная болезнь.

• К острой гипоксии условно относят все случаи значительного и быстрого снижения рО2в окружающей газовой среде, в результате которого через относительно небольшой срок у здоровых, но ранее не адаптированных к гипоксии людей возникают различной тяжести патологические состояния. Реально такие ситуации бывают после быстрых подъемов на высоты 4000–5000 м и выше или после внезапного прекращения подачи кислорода во время высотных полетов.

Определенный практический интерес представляют данные, характеризующие время сохранения сознания и работоспособности у человека при пребывании его на различных высотах без кислорода.

Этот вопрос изучался еще до Второй мировой войны, преимущественно в СССР и Германии. Советские исследователи в основном определяли «высотный потолок»т. е. время, через которое у обследуемых появлялись расстройства деятельности ЦНС, нарушения сознания, снижение работоспособности в процессе непрерывного подъема в условиях барокамеры. Немецкие исследователи ввели понятие о«резервном времени», которое характеризует тот отрезок времени, в течение которого у обследуемого на высоте после прекращения подачи О2 сохранялся еще минимальный уровень работоспособности, достаточный для принятия мер по спасению. В американской и английской литературе используется с этой же целью термин«время активного сознания»(В. Б. Малкин,1975).

Величина резервного времени зависит прежде всего от высоты, а также от индивидуальной устойчивости к гипоксии. С увеличением высоты индивидуальные колебания величины резервного времени суживаются, так что на высотах более 9000 м они практически стираются. На высотах 15 000 м и выше резервное время практически отсутствует (8-10 с). После быстрых подъемов (1–2 с) на такие высоты у обследуемых, независимо от того, дышат ли они воздухом или чистым кислородом, потеря сознания без всяких предвестников отмечалась уже через 15 с. В случаях, когда пребывание на этих высотах ограничивалось 8-10 с, после чего осуществлялся быстрый спуск с высоты, потеря сознания возникала через 5–7 с в период спуска. Это обусловлено тем, что кровь, обедненная О2, поступает в сосуды мозга через 5–7 с после начала спуска с высоты. Практически почти полное отсутствие резервного времени, равно как исчезновение защитного эффекта от дыхания О2, обусловлено тем, что при снижении барометрического давления до 87ммрт. ст. (высота 15 200 м) в легкихрО2становится равным нулю, даже если человек дышит чистым О2, так как парциальное давление паров воды (рН2О) при температуре тела 37 °C в альвеолярном воздухе составляет 47 мм рт. ст., а (рАСО2) в нормальных условиях близко к 40 мм рт. ст. Таким образом, суммарное давление (рСО2+рН2О) равно 87 мм рт. ст. В связи с этим высоту 15 200 м, на которой барометрическое давление равно 87 мм рт. ст. порО2, считают «эквивалентной» космическому пространству.

Вполне очевидно, что при столь кратком резервном времени на крайне больших высотах самостоятельное спасение возможно только при использовании специальных высотных средств жизнеобеспечения, автоматически приводимых в рабочее состояние в случае нарушения кислородного обеспечения. Возрастание резервного времени до 1–2 мин и более на меньших высотах позволит оценить создавшуюся аварийную ситуацию и принять меры по спасению: включить дополнительную подачу О2, подтянуть маску к лицу, снизиться на безопасную высоту или, как крайняя мера, покинуть самолет.

При прогнозировании течения и исхода острой гипоксической гипоксии важно знать не только резервное время человека, но и тот предельный срок, в течение которого при резком дефиците О2еще сохраняются основные физиологические функции и возможно самостоятельное и полное восстановление жизни после устранения гипоксии. Этот период от начала воздействия гипоксии до истечения срока возможного самопроизвольного (без реанимационных процедур) восстановления подавленных функций называют временем выживания или общим временем спасения. В этот период у животных обычно наблюдается не только потеря позы, но и остановка дыхания при сохранении сердечной деятельности. В опытах с быстрой (0,5 с) декомпрессией на большие высоты собак без предварительной десатурации (выведение избыточного азота из организма) время выживания составляло всего 50–66 с. У шимпанзе при декомпрессии за 0,8 с время выживания было в среднем 180 с. Речь шла о сверхострых формах гипоксии, возникающих после внезапного прекращения нормального кислородного снабжения организма на высотах, превышающих 15 000 м.

В процессе развития острой гипоксии возникают закономерные изменения физиологического состояния, о которых можно судить по результатам ЭЭГ, ЭКГ, регистрации дыхания, насыщения артериальной крови кислородом. Важным диагностическим показателем развития острой гипоксии и ее тяжести являются изменения ЭЭГ. В период проявления нарушений почерка и интеллектуальных расстройств на ЭЭГ появляются (сначала в лобных отведениях) Θ-волны повышенной амплитуды. По мере нарастания тяжести высотной болезни число и амплитуда Θ– и Δ-волн постепенно увеличиваются, они доминируют на ЭЭГ в период появления судорог и нарушения сознания.

Касаясь связи между ЭЭГ и психическим состоянием человека при нарастающей гипоксии, Г. Уолтер (1963) писал:«Умирающий мозг спокоен. По мере того как кровь, достигающая его, приносит все меньше и меньше кислорода, одновременно с затемнением сознания появляются… медленные волны. Они увеличиваются по амплитуде, затем постепенно идут на убыль, а вместе с ними исчезает и организация личности».

Потерю сознания при острой гипоксии относят к гомеостатическим обморокам, так как причиной ее является гипоксемия – значительное снижение насыщения кислородом крови. Мозговое кровообращение некоторое время после потери сознания сохраняется на достаточно высоком уровне, поэтому восстановление нормального снабжения организма кислородом (спуск с высоты, дыхание кислородом) приводит к быстрому, в течение 5-10 с, восстановлению сознания и исчезновению всех симптомов.

После восстановления сознания у обследуемых отмечается ретроградная амнезия – они не помнят обстоятельств, непосредственно предшествовавших потере сознания. Более того, утверждают, что все время чувствовали себя на высоте хорошо и выполняли все задания правильно.

У человека, страдающего от острого недостатка О2, нарушен почерк, появляются грубые грамматические ошибки – пропуски букв; характер тестового рисунка свидетельствует о появлении эйфории. Это определяет потерю адекватного отношения к окружающей обстановке и к собственному состоянию.

«Странным образом кора больших полушарий и подчиненные ей узлы плохо защищены против недостатка кислорода. Человек, погибающий в атмосфере угарного газа или разреженного воздуха, редко испытывает острое недомогание»,– писалГ. Уолтер. 0тсутствие внутренних сигналов (каких-либо неприятных ощущений) при остром кислородном голодании привело исследователей к мысли о целесообразности создания автоматической аппаратуры, сигнализирующей о развитии острой гипоксии. В настоящее время сложились два методических подхода к решению этой задачи (В. Б. Малкин, 1975, 1986).

1.Первый метод сравнительно простой –автоматическая обработка информации, полученной от датчиков, регистрирующих основные параметры вдыхаемого воздуха:рО2,рСО2, температуру и др. При определенных изменениях этих параметров, например при снижениирО2во вдыхаемом воздухе до заранее установленной величины, подается сигнал о развитии гипоксического состояния и в случае необходимости могут быть либо автоматически включены специальные средства, повышающиерО2в воздухе, либо дана команда для использования индивидуальных средств защиты.

2.Второй метод, на котором может быть построена автоматическая сигнализация о гипоксическом состоянии и который ни в коей мере не исключает использование первого метода, но в некоторых ситуациях существенно дополняет его, сводится к диагностике гипоксического состояния по данным отклонений важнейших физиологических параметров.

Высокая корреляция при острой гипоксии между сдвигами ЭЭГ и тяжестью расстройств ЦНС привела некоторых исследователей к попытке количественно оценить эти сдвиги с целью их использования при составлении программы для приборов, осуществляющих автоматически диагностику гипоксических состояний.

В программу, разработанную в нашей стране, помимо ЭЭГ, были включены и другие физиологические показатели: ЭКГ (частота пульса), АД (артериальное давление) и насыщение артериальной крови кислородом. Сочетанные изменения этих показателей характеризуют различную глубину гипоксического состояния.

В отношении действия различных степеней высотной гипоксии на организм не тренированного к недостатку О2человека было отмечено, что до высот 5000 м еще возможна стойкая адаптация организма к гипоксии. Об этом свидетельствует то, что на высотах 3000–5000 м постоянно живут до 25 млн человек, из них 4 млн – на высотах, превышающих 4000 м. При этом относительно умеренный дефицит кислорода на высотах до 3000–3500 м приводит к функциональной перестройке дыхания, кровообращения, аппарата, регулирующего деятельность этих систем, в результате которой адаптационный резерв организма оказывается в конечном итоге повышенным.

Направления и перспективы исследований проблемы гипоксии в связи с развитием авиации и космонавтики.

1.Не вызывает каких-либо сомнений целесообразность использования острой гипоксии (подъемов в барокамере) в качестве теста для медицинского отбора лиц, поступающих на службу в авиацию и претендующих на участие в космических полетах. Эта традиционная для авиакосмической медицины функциональная проба вполне себя оправдала, так как во многих случаях позволяет выявлять людей как с недостаточным адаптационным резервом сердечно-сосудистой системы, прежде всего имеющих сниженную функциональную способность нейрогуморального аппарата, регулирующего кровообращение, так и лиц с повышенной чувствительностью ЦНС к гипоксии.

2.Второе весьма важное направление –использование гипоксической гипоксии в качестве тренирующего фактора, повышающего адаптационный резерв организма человека. Было установлено, что активный отдых в горах на высотах 2000–3000 м с эпизодическими подъемами на большие высоты приводит к увеличению адаптационного резерва организма. При этом отмечено повышение устойчивости тренированных людей не только к острой гипоксии, но и к некоторым другим экстремальным воздействиям.

В настоящее время можно предположить, что полный цикл тренировки должен включать последовательное чередование или сочетанное воздействие гипоксических и физических нагрузок.

В практике же авиакосмической медицины до настоящего времени еще недостаточно используется гипоксическая тренировка для реабилитации здоровья летчиков и космонавтов. Использование высокогорья, а в некоторых случаях и тренировок в барокамере для восстановления адаптационного резерва организма лиц, астенизированных в результате летной профессиональной деятельности, весьма перспективно (В. Б. Малкин, 1986).

Таким образом, кислородное голодание не следует рассматривать односторонне, только как причину развития многочисленных патологических состояний. В норме жизнь человека, по-видимому, должна эпизодически быть связана с возникновением умеренных степеней кислородной недостаточности. Периодическое снижение напряжения О2в артериальной крови является обязательным условием для становления и совершенствования регуляции дыхания и кровообращения, для нормальной деятельности системы гемопоэза. В результате эпизодического снижениярАО2 расширяются адаптационные возможности организма, повышается его способность противостоять неблагоприятным факторам среды.