logo search
ППИ

Понятие о статистическом критерии

Очень часто перед исследователем в психологии стоит задача выявления различий между двумя, тремя и более выборками испытуемых. Это может быть, например, задача определения психологических особенностей хронически больных детей по сравнению со здоровыми, между работниками государственных предприятий и частных организаций, между людьми разного возраста и пола. Кроме того, одной из наиболее часто встречающихся статистических задач, с которыми сталкивается психолог, является задача сравнения результатов обследования какого-либо психологического признака в разных условиях измерения (например, до и после тренинга). Помимо этого нередко возникает необходимость оценить характер изменения того или иного психологического показателя в одной или нескольких группах в разные периоды времени или выявить динамику изменения этого показателя под влиянием экспериментальных воздействий. Для решения подобных задач используется достаточно большой набор статистических способов, называемых в наиболее общем виде критериями различий. Эти критерии позволяют оценить степень статистической достоверности различий между разнообразными показателями, измеренными согласно плану проведения психологического исследования.

Существует достаточно большое количество критериев различий. Каждый из них имеет свою специфику, различаясь между собой по следующим основаниям:

Первое основание - тип измерительной шкалы, для которой пред­назначен тот или иной критерий. Например, с помощью некоторых критериев можно обрабатывать данные, полученные только в номинальных шкалах. Ряд критериев дает возможность обрабатывать данные, полученные в порядковой, интервальной и шкале равных отношений.

Второе основание - максимальный объем выборки, который они могут охватить, а также количество выборок, которые можно сравнивать между собой с их помощью. Существуют критерии, позволяющие оценить различия сразу в трех и большем числе выборок. Некоторые критерии позволяют сопоставить неравные по численности выборки.

Третье основание - качество выборки: она может быть связной (зависимой) и несвязной (независимой).

Все критерии различий условно подразделены на две группы: параметрические и непараметрические критерии.

Критерий различия называют параметрическим, если он основан на конкретном типе распределения генеральной совокупности (как правило, нормальном) или использует параметры этой совокупности (средние, дисперсии и т.д.). Критерий различия называют непараметрическим, если он не базируется на предположении о типе распределения генеральной совокупности и не использует параметры этой совокупности.

При нормальном распределении генеральной совокупности параметрические критерии обладают большей мощностью по сравнению с непараметрическими. Иными словами, они способны с большей достоверностью отвергать нулевую гипотезу, если последняя неверна. Поэтому в тех случаях, когда выборки взяты из нормального распределения генеральных совокупностей, следует отдавать предпочтение параметрическим критериям.

Однако практика показывает, что подавляющее большинство данных, получаемых в психологических экспериментах, не распределены нормально, поэтому применение параметрических критериев в анализе результатов психологических исследований может привести к ошибкам в статистических выводах. В таких случаях непараметрические критерии оказываются более мощными, то есть способными с большей достоверностью отвергать нулевую гипотезу.

Решение о выборе того или иного критерия принимается на осно­вании того, является ли выборка зависимой или независимой, сколько выборок сопоставляется, каков их объем и является ли распределение нормальным.

Однозначно определенный способ проверки статистических гипотез называется статистическим критерием. Статистический критерий строится с помощью статистики U(x1, x2, …, xn) – функции от результатов наблюдений x1, x2, …, xn. В пространстве значений статистики U выделяют критическую область Ψ, т.е. область со следующим свойством: если значения применяемой статистики принадлежат данной области, то отклоняют (иногда говорят - отвергают) нулевую гипотезу, в противном случае – не отвергают (т.е. принимают).

Статистику U, используемую при построении определенного статистического критерия, называют статистикой этого критерия. Например, в задаче проверки статистической гипотезы, приведенной в примере 14, применяют критерий Колмогорова, основанный на статистике

.

При этом Dn называют статистикой критерия Колмогорова.

Частным случаем статистики U является векторзначная функция результатов наблюдений U0(x1, x2, …, xn) = (x1, x2, …, xn), значения которой – набор результатов наблюдений. Если xi – числа, то U0 – набор n чисел, т.е. точка n–мерного пространства. Ясно, что статистика критерия U является функцией от U0, т.е. U = f(U0). Поэтому можно считать, что Ψ – область в том же n–мерном пространстве, нулевая гипотеза отвергается, если (x1, x2, …, xn)Ψ, и принимается в противном случае.

В вероятностно-статистических методах обработки данных и принятия решений статистические критерии, как правило, основаны на статистиках U, принимающих числовые значения, и критические области имеют вид

Ψ = {U(x1, x2, …, xn) > C},  

где С – некоторые числа.

Статистические критерии делятся на параметрические и непараметрические. Параметрические критерии используются в параметрических задачах проверки статистических гипотез, а непараметрические – в непараметрических задачах.