logo search
ПСИХОГЕНЕТИКА

8.4. Прямой анализ днк и выявление мутаций

Когда в результате анализа сцепления предполагаемое место гена на хромосоме определено, это означает всего лишь, что мы знаем, где находится данный ген, но этого недостаточно для того, чтобы понять механизмы изучаемого заболевания или типа поведения. Главная задача исследователей - не установить, где расположен ген, а понять, как он работает, и как факторы среды могут влиять на формирование изучаемой характеристики. До недавнего времени такая задача вообще не имела решения в рамках тех генетико-эпидемиологических подходов, которыми пользовалась психогенетика (см. предыдущую тему). Сейчас положение в корне изменилось: современные молекулярно-генетические методы позволяют непосредственно изучать тот участок молекулы ДНК, в котором расположен ген, связанный с контролем поведенческого признака. Гораздо меньшие возможности существуют пока для того, чтобы изучать, как среда влияет на работу гена.           Сейчас коротко опишем некоторые методы, которые применяются при непосредственном анализе ДНК. Вначале рассмотрим некоторые основные достижения генетики последних лет, которые создали предпосылки для массового использования молекулярно-генетических методов.           Осуществление проекта "Геном человека" было бы невозможно без применения методов генетической инженерии. Это направление в генетике возникло в начале 70-х гг. В его основе лежит методология конструирования и получения рекомбинантных ДНК. Рекомбинантными называются молекулы ДНК, которые получаются путем объединения in vitro (в пробирке) чужеродных фрагментов ДНК, которые в природе не встречаются. При этом применяются методы обратной транскрипции, позволяющие с помощью особого фермента (обратной транскриптазы) на основе фрагментов молекулы РНК получать комплементарные фрагменты ДНК. Напомним, что при синтезе белка с гена считывается информация в направлении ДНК —> РНК. При обратной транскрипции процесс идет в противоположном направлении.           Подлинную революцию в изучении генома совершило открытие в 1983 г. полимеразной цепной реакции (ПЦР). Ее автору, К. Муллису в 1993 г. была присуждена Нобелевская премия в области биологии и медицины. Метод ПЦР позволяет тиражировать in vitro фрагменты ДНК в неограниченном количестве, при этом в качестве исходного материала достаточно минимального количества ДНК. Процесс амплификации ДНК состоит из повторяющихся циклов, каждый из которых включает три стадии: денатурации (получение одноцепочечных фрагментов ДНК), отжига (присоединение праймеров к комплементарным последовательностям одноцепочечных молекул) и синтеза (рис. 8.7).           Эти и некоторые другие методы генетической инженерии лежат в основе молекулярно-генетической диагностики. Коротко остановимся на некоторых этапах молекулярно-генетических исследований.

Для обнаружения конкретных мутаций проводят секвенирование ДНК, т.е. определение точной последовательности пар нуклеотидов в ДНК. Существуют различные модификации описанных методов, однако главной целью работы в любом случае является получение максимально возможной информации о строении гена.